3.5 Разработка практического занятия
Практическое занятие №11
Тема: Тройной интеграл и его геометрические приложения
Тип занятия – практикум, форма занятия представляет собой комбинированную между коллективной и фронтальной.
Средствами обучения на данном практическом занятии являются: сборник задач по математическому анализу, рисунки на доске, методические рекомендации по проведению практических занятий.
При проведении занятия использовались следующие методы обучения – словесные, наглядные, по дидактической цели – познавательные, по характеру познавательной деятельности – проблемные.
Цель: при решении упражнений закрепить знания, умения и навыки, полученные на лекции в области вычисления тройных интегралов по любой области, с помощью замены переменных, вычисления объемов тел, координат центра тяжести.
Ход занятия:
I. Организационная часть
Студентам сообщается тема практического занятия, его цель, проводится проверка присутствующих.
II. Основная часть
В начале занятия проводится фронтальный опрос с целью проверки теоретических знаний по изученной теме. Студентам предлагается ответить на следующие вопросы у доски, выполняя необходимые при ответе записи (у доски работают 4 студента одновременно).
Вопрос 1. Сформулируйте определение тройного интеграла.
Ответ: Если при
интегральная сумма
стремиться к конечному пределу, причем он не зависит от способа разбиения
на подобласти
и выбора точки
, то функция
называется интегрируемой по области
, а сам предел называется тройным интегралом от функции
по области
и обозначается
.
Вопрос 2. Написать формулы вычисления тройного интеграла: для 1 и 2 случаев.
Ответ:
1.случай. Область имеет следующий вид:
В данном случае считают, что
- измеряемое сечение, функция
определена на
и интегрируема на нем. При таких условиях тройной интеграл будет определяться по формуле:
.
Замечание: Считается, что
- измеримая область
с гладкой границей.
2 случай. Задана на
непрерывная функция
.
Анализ системы
подготовки квалифицированных рабочих в Швейцарии
В Швейцарии существуют некоторые особенности реализации принципов профессионального обучения. В процессе обучения, преподаватель должен стараться обеспечить вовлечение жизненного опыта студентов в усвоение идей конкретного курса. Наиболее успешное обучение - обучение через действие. Чтобы взаимодей ...
Изучение уровня школьной тревожности у подростков с легкой степенью
умственной отсталости и подростков с сохранным интеллектом
Результаты исследования школьной тревожности по методике Филлипса у подростков с легкой степенью умственной отсталости и подростков с сохранным интеллектом представлены на рис. 1. Рис. 1. Средне-групповые значения уровня школьной тревожности подростков с легкой степенью умственной отсталости и подр ...
Выявление взаимосвязей между показателями общительности, нервно-психической
неустойчивости
С целью определения связи между показателями
общительности, нервно-психической неустойчивости, тревожности-самоуверенности и физической агрессии у детей с легкой степенью умственной отсталости был проведен корреляционный анализ, результаты которого представлены ниже в виде корреляционных плеяд. В г ...