Методические рекомендации по проведению лекционных занятий с применением информационных технологий

Новое образование » Теоретические и методические аспекты изучения темы "Интегральное исчисление функции нескольких переменных" » Методические рекомендации по проведению лекционных занятий с применением информационных технологий

Страница 11

2.Тогда область разобьется кусочно-гладкими границами на частичные области , .

3.Составим интегральную сумму такого рода

,

так как

и на основании справедливы формулы

.

Интегральную сумму можно переписать в таком виде

4..

5.Если перейти к пределу при от левой части формулы п.3 и от правой части п.4, то получится требуемое выражение, ч.т.д .

Объем в ЦСК и ССК

1.В ЦСК объем вычисляется по формуле:

.

2. В ССК объем вычисляется по формуле:

.

3.4 Методические рекомендации по проведению практических занятий

тройной интеграл педагогический студент

При изучении курса «Математический анализ» студенты часть материала должны проработать самостоятельно. Роль самостоятельной работы велика.

Планирование самостоятельной работы студентов по курсу «Математический анализ» необходимо проводить в соответствии с уровнем подготовки студентов к изучаемому курсу. Самостоятельная работа студентов распадается на два самостоятельных направления: на изучение и освоение теоретического лекционного материала, и на освоение методики решения задач по математическому анализу.

В помощь студенту здесь могут быть рекомендованы фондовые лекции, которые разрабатывает ведущий преподаватель курса. Фондовые лекции представлены в распечатанном и набраны в электронном видах. При всех формах самостоятельной работы студент может получить разъяснения по непонятным вопросам у преподавателя на индивидуальных консультациях в соответствии с графиком консультаций. Студент может также обратиться к рекомендуемым преподавателем учебникам, учебным пособиям и обучающе – контролирующей программе, в которых теоретические вопросы изложены более широко и подробно, чем на лекциях и с достаточным обоснованием.

Консультация – активная форма учебной деятельности в педагогическом вузе. Консультацию предваряет самостоятельное изучение студентом литературы по определенной теме. Качество консультации зависит от степени подготовки студентов и остроты поставленных перед преподавателем вопросов.

Основной частью самостоятельной работы студента является его систематическая подготовка к практическим занятиям. Студенты должны быть нацелены на важность качественной подготовки к таким занятиям. При подготовке к практическим занятиям студенты могут пользоваться разработанными «Методическими рекомендациями к практическим занятиям» по курсу «Математический анализ» и задачниками. Кроме того, можно воспользоваться электронным пособием по теме “Тройные интегралы” . Планы практических занятий и заданий к ним приведены в «Методических рекомендациях к практическим занятиям».

Страницы: 6 7 8 9 10 11 12 13 14 15 16

Новые статьи:

Методика диагностики психологической готовности к школьному обучению Н.И. Гуткиной
Наиболее удачной в отношении практического использования нам представляется методика диагностики психологической готовности к школьному обучению Н.И. Гуткиной. Ее достоинства заключаются в том, что при своей компактности она позволяет оценить самые важные компоненты психологической готовности. Отбо ...

Стадии умственного развития
Взрослые способны выполнять умственные операции на высоком уровне абстракции и логики. Для педагогов одним из наиболее важных аспектов работы Пиаже является выделение им стадий, которые необходимы для усвоения формальных операций. Познакомимся с краткой характеристикой этих стадий. Таблица 2-2 I Се ...

Роль художественной литературы в воспитании дошкольников
Отбирая произведения для детей, мы опираемся на народное творчество, классику и современное искусство. Каждый народ веками отбирает, шлифует формы, краски, орнаменты на игрушках, мелодии и ритмы песен, движения танцев, меткость и образность языка словесного фольклора. Все это впитывается ребенком с ...

Разделы

Copyright © 2020 - All Rights Reserved - www.detailededu.ru