Введем сферические координаты
,
,
,
.
Новые переменные изменяются в пределах
,
,
.
Таким образом,
.
№7(Преподаватель у доски) Вычислить объем тела, ограниченного сферой
и параболоидом
.
Решение:
Найдем проекцию линии пересечения сферы и параболоида на плоскость
. Для этого достаточно из системы уравнений
,
исключить переменную
. В результате получим:
или
, откуда
и
- корни квадратного уравнения.
Следовательно, уравнением проекции будет окружность
.
В силу симметрии достаточно вычислить объем тела
находящегося в 1 октанте, и результат умножить на 4. Тогда согласно формуле:
для искомого объема получим
Так как проекция данного тела
на плоскость
есть круг
, то для вычисления последнего интеграла целесообразно перейти к цилинричиским координатам.
После преобразования по формулам:
,
,
уравнения окружности
, параболоида
и сферы
, соответственно принимают вид:
,
и
. Из рисунка видно, что в области интегрирования
угол
изменяется от
до
,
- от
до
,
- от
до
. Поэтому
Развитие изобразительной деятельности в дошкольном возрасте
Среди разнообразных видов творческой деятельности, которой любят заниматься дети дошкольного возраста, большое место занимает изобразительное искусство, в частности детское рисование. В него постепенно все более активно включаются представления и мышления. От изображения того, что он видит, ребенок ...
Вычисление тройного интеграла по любой области
Общий случаи интеграла, распространенного на тело любой формы, может быть легко приведен к только что рассмотренному. Именно, если функция определена в области ,то вместо нее следует лишь ввести, функцию , определенную в объемлющем прямоугольном параллелепипеде , полагая Этим путем и получаются все ...
Понятие воспитания
Воспитание (в широком значении). Понятие воспитание трактуется в науке широко и многоаспектно. Отдельные определения этого понятия даны в трудах ученых, в том числе в Советском энциклопедическом словаре. (М., 1982, с. 248), в Российской педагогической энциклопедии (в 2-х тт. — М., 1993. — Т. 1. С. ...