Решение:
Найдем проекцию области
на плоскость
, то есть
:
,
.
На плоскость
:
,
.
На плоскость
:
,
.
Проекцией тела на плоскость
служит треугольник
, образованный прямыми
,
и
.
Границами изменения
служат числа 0 и 1, а при постоянном
переменная
изменяется от 0 до
.
Если же фиксированы и
, и
, то пределами изменения
будут 0 и
. По формуле
получаем
[17].
Первичное закрепление материала проводится при решении студентами у доски упражнений, подобных рассмотренным. Остальные решают на месте, сверяя свое решение с решением у доски.
№4.(Преподаватель у доски) Вычислить тройной интеграл
, если
- шар
[21].
Решение:
Перейдем к сферическим координатам
,
,
,
. В области
координаты
,
,
изменяются так:
,
,
Свойства интегрируемых функций и тройных интегралов
1. Существование и величина тройного интеграла не зависят от значений, принимаемых функцией вдоль конечного числа поверхностей с объемом 0. 2. Если , то , причем из существования интеграла слева вытекает уже существование интегралов справа, и обратно. 3. Если k= const, топричем из существования инт ...
Программа по формированию основ здоровья и здорового образа жизни
Рассматривая здоровье человека как многокомпонентную модель, нельзя не остановиться на его определении, данном ВОЗ, в котором "здоровье - это состояние полного физического, духовного и социального благополучия, а не только отсутствие болезни или дефектов" (1968). Следовательно, в основу д ...
Организация восприятия народных сказок через комплекс форм, методов и приемов
воспитания
Формы, методы, приемы работы со сказкой могут быть самыми разнообразными. Формы организации работы с использованием народной сказки должны соответствовать возрасту детей: в работе с дошкольниками это – фронтальные занятия, чтение сказок вне занятий, работа по подгруппам, индивидуальная работа с реб ...