Замена переменных в тройных интегралах

Страница 1

С помощью выражения объема в криволинейных координатах нетрудно установить и общую формулу замены переменных в тройных интегралах.

Пуста между областями и пространств и cyществует соответствие, охарактеризованное в п0 2.1. Считая соблюденными все условия, при которых была выведена формула (26), покажем теперь, что имеет место следующее равенство

где , вполне похожее формуле замены переменных в двойных интегралах. При этом функцию предполагаем непрерывной или, самое большее, допускающей разрывы вдоль конечного числа кусочно-гладких поверхностей (но во всяком случае сохраняющей ограниченность). Таким образом, существование обоих интегралов в равенстве не вызывает сомнений; нужно установить лишь самое равенство.

Разложив кусочно-гладкими поверхностями области и на (соответствующие друг другу) элементарные части и , применим к каждой паре областей , формулу (25); получим

,

где есть некоторая точка области не зависящая от выбора. Возьмем соответствующую точку области , т. е. положим

, , ,

и составим интегральную сумму для первого из интегралов:

.

Подставив сюда вместо , , выражения , а вместо —выражение (28), придем к сумме

,

которая, очевидно, уже является интегральной суммой для второго из интегралов .

Устремим к нулю диаметры областей , вследствие чего в силу непрерывности соответствия устремятся к нулю и диаметры областей . Сумма должна стремиться одновременно к обоим интегралам, откуда и следует требуемое равенство.

Как и в случае двойных интегралов формула имеет место и при нарушении сформулированных выше при доказательстве формулы предположений в отдельных точках или вдоль конечного числа кусочно-гладких линий и поверхностей, лишь бы якобиан сохранял ограниченность.

Можно пойти дальше при расширении условий применимости формулы (28), допуская и несобственные интегралы. Подчеркнем еще раз, что при указанных там условиях формула имеет место в предположении существования одного из интегралов , существование другого отсюда уже будет вытекать.

Страницы: 1 2

Новые статьи:

Онтогенез развития связной речи в дошкольном возрасте с нормальным речевым развитием
Вопросы развития связной речи изучались в разных аспектах Ушинским К.Д., Тихеевой Е.И., Коротковой Э.П., Бородич А.М., Усовой А.П., Соловьевой О.И. и другими. "Связная речь, - подчеркивал Сохин Ф.А., - это не просто последовательность связанных друг с другом мыслей, которые выражены точными сл ...

Как подготовить рабочий план проведения исследований, включающий этапы исследований, оценку затрат времени и выбор источников информации
Организационно-методический план, фиксирующий основные этапы работы в соответствии с программой исследования, содержащий указание календарных сроков, материальных и людских затрат, необходимых для достижения конечных целей. Составляется после завершения разработки программы исследования и необходим ...

Социальная значимость педагогической профессии
Профессия учителя является одной из древнейших. Первые школы возникли в странах древнего Востока в период формирования рабовладельческого общества. Постепенно из наблюдений, в процессе строительства городов и гидротехнических сооружений накапливался опыт общественно полезной деятельности, связанной ...

Разделы

Copyright © 2020 - All Rights Reserved - www.detailededu.ru