Замена переменных в тройных интегралах

Страница 1

С помощью выражения объема в криволинейных координатах нетрудно установить и общую формулу замены переменных в тройных интегралах.

Пуста между областями и пространств и cyществует соответствие, охарактеризованное в п0 2.1. Считая соблюденными все условия, при которых была выведена формула (26), покажем теперь, что имеет место следующее равенство

где , вполне похожее формуле замены переменных в двойных интегралах. При этом функцию предполагаем непрерывной или, самое большее, допускающей разрывы вдоль конечного числа кусочно-гладких поверхностей (но во всяком случае сохраняющей ограниченность). Таким образом, существование обоих интегралов в равенстве не вызывает сомнений; нужно установить лишь самое равенство.

Разложив кусочно-гладкими поверхностями области и на (соответствующие друг другу) элементарные части и , применим к каждой паре областей , формулу (25); получим

,

где есть некоторая точка области не зависящая от выбора. Возьмем соответствующую точку области , т. е. положим

, , ,

и составим интегральную сумму для первого из интегралов:

.

Подставив сюда вместо , , выражения , а вместо —выражение (28), придем к сумме

,

которая, очевидно, уже является интегральной суммой для второго из интегралов .

Устремим к нулю диаметры областей , вследствие чего в силу непрерывности соответствия устремятся к нулю и диаметры областей . Сумма должна стремиться одновременно к обоим интегралам, откуда и следует требуемое равенство.

Как и в случае двойных интегралов формула имеет место и при нарушении сформулированных выше при доказательстве формулы предположений в отдельных точках или вдоль конечного числа кусочно-гладких линий и поверхностей, лишь бы якобиан сохранял ограниченность.

Можно пойти дальше при расширении условий применимости формулы (28), допуская и несобственные интегралы. Подчеркнем еще раз, что при указанных там условиях формула имеет место в предположении существования одного из интегралов , существование другого отсюда уже будет вытекать.

Страницы: 1 2

Новые статьи:

Современные формы и методы работы педагога по формированию ЗОЖ
«Здоровье формирующие образовательные технологии», по определению Н.К. Смирнова, - это все те психолого-педагогические технологии, программы, методы, которые направлены на воспитание у учащихся культуры здоровья, личностных качеств, способствующих его сохранению и укреплению, формирование представл ...

Характеристика связной речи и ее особенности
Каждый ребенок должен научиться содержательно, грамматически правильно, связно и последовательно излагать свои мысли. В то же время речь детей должна быть живой, непосредственной, выразительной. Связная речь неотделима от мира мыслей: связность речи - это связность мыслей. В связной речи отражается ...

Типология игр для дошкольников
Различают игры. По способу проведения (с водящим, без водящего, с предметами, без предметов, ролевые, сюжетные). По физическим качествам, преимущественно проявленным в игре (игры, преимущественно способствующие воспитанию силы, выносливости, ловкости, быстроты, гибкости). По отношению к структуре у ...

Разделы

Copyright © 2022 - All Rights Reserved - www.detailededu.ru