Замена переменных в тройных интегралах

Страница 1

С помощью выражения объема в криволинейных координатах нетрудно установить и общую формулу замены переменных в тройных интегралах.

Пуста между областями и пространств и cyществует соответствие, охарактеризованное в п0 2.1. Считая соблюденными все условия, при которых была выведена формула (26), покажем теперь, что имеет место следующее равенство

где , вполне похожее формуле замены переменных в двойных интегралах. При этом функцию предполагаем непрерывной или, самое большее, допускающей разрывы вдоль конечного числа кусочно-гладких поверхностей (но во всяком случае сохраняющей ограниченность). Таким образом, существование обоих интегралов в равенстве не вызывает сомнений; нужно установить лишь самое равенство.

Разложив кусочно-гладкими поверхностями области и на (соответствующие друг другу) элементарные части и , применим к каждой паре областей , формулу (25); получим

,

где есть некоторая точка области не зависящая от выбора. Возьмем соответствующую точку области , т. е. положим

, , ,

и составим интегральную сумму для первого из интегралов:

.

Подставив сюда вместо , , выражения , а вместо —выражение (28), придем к сумме

,

которая, очевидно, уже является интегральной суммой для второго из интегралов .

Устремим к нулю диаметры областей , вследствие чего в силу непрерывности соответствия устремятся к нулю и диаметры областей . Сумма должна стремиться одновременно к обоим интегралам, откуда и следует требуемое равенство.

Как и в случае двойных интегралов формула имеет место и при нарушении сформулированных выше при доказательстве формулы предположений в отдельных точках или вдоль конечного числа кусочно-гладких линий и поверхностей, лишь бы якобиан сохранял ограниченность.

Можно пойти дальше при расширении условий применимости формулы (28), допуская и несобственные интегралы. Подчеркнем еще раз, что при указанных там условиях формула имеет место в предположении существования одного из интегралов , существование другого отсюда уже будет вытекать.

Страницы: 1 2

Новые статьи:

Роль художественной литературы в воспитании дошкольников
Отбирая произведения для детей, мы опираемся на народное творчество, классику и современное искусство. Каждый народ веками отбирает, шлифует формы, краски, орнаменты на игрушках, мелодии и ритмы песен, движения танцев, меткость и образность языка словесного фольклора. Все это впитывается ребенком с ...

Диагностика развития нравственной позиции воспитателей дошкольного образовательного учреждения
Для проведения эксперимента мы выбрали Детский сад «Ромашка» МОУ «Безыменская средняя общеобразовательная школа» Грайворонского района Белгородской области. В эксперименте участвовали 6 педагогов (2 специалиста имеют высшее образование, 4 – среднее специальное образование). Стаж работы до 5 лет – 1 ...

Тема «Кальций и его соединения» в школьном курсе химии
Химия – одна из стремительно развивающихся областей знания, результаты ее ускоренного развития в макро- и микромасштабах проявляются в повседневной жизни. А вот время на изучение этой дисциплины в школе неуклонно сокращается. И это не может не увеличивать пропасть между наукой и содержанием школьно ...

Разделы

Copyright © 2021 - All Rights Reserved - www.detailededu.ru