Координатные поверхности составляют три семейства:
а) — концентрические сферы с центром в начале координат;
б) — круговые конусы, осью которых служит ось
;
в) — полуплоскости, проходящие через ось
.
Якобиан этого преобразования:
.
Якобиан сохраняет знак плюс, за исключением упомянутых выше случаев, когда , либо
, и якобиан обращается в нуль.
3) Преобразование пространства самого в себя по формулам:
,
,
однозначно обратимо:
,
,
.
Оно называется инверсией.
4) Эллиптические координаты. Рассмотрим семейство софокусных и соосновных поверхностей второго порядка:
,
состоящее из эллипсоидов (при ), однополостных гиперболоидов (при
) и, наконец, двуполостных гиперболоидов (при
).
Через каждую точку пространства, не лежащую на координатах плоскостях, проходит по одной поверхности каждого типа. Действительно, левая часть уравнения, получаемого из :
,
имеет знак минус при , знак плюс при
, снова знак минус при
и, наконец, знак плюс при больших
. Отсюда следует, что уравнение имеет три положительных корня: один
(что отвечает эллипсоиду), второй
, (он дает однополостный гиперболоид), третий
(двуполостной гиперболоид).
Используя свойства корней написанного выше уравнения, которое мы можем рассматривать как кубическое уравнение относительно , а именно:
,
;
,
найдем:
,
,
.
Если ограничиться первым координатным октантом, то в этих формулах надлежит сохранить лишь положительные знаки. Числа можно рассматривать, как криволинейные координаты точек этого угла. Их и называют эллиптическими координатами. Три семейства координатных поверхностей - это и будут семейства эллипсоидов, однополостных и двуполостных гиперболоидов, о которых была речь выше.
Якобиан преобразования имеет вид:
Анализ готового электива «Окно в Британию»
Аналогично проанализируем элективный курс «Окно в Британию», составленный Т.Д. Андросенко. С точки зрения структурных компонентов, данное издание включает в себя: титульный лист, пояснительную записку, содержание курса, учебно-тематический план. В титульном листе указан автор-составитель курса, ком ...
Особенности нарушений письма у младших школьников при билингвизме
По мнению Гончаровой В.А. проблема нарушений письменной речи является одной из наиболее актуальных на современном этапе развития логопедии, что обусловлено значительной распространенностью этой речевой патологии, тенденцией к увеличению числа детей, страдающих дисграфиями, дислексиями, значительным ...
Развитие музыкального восприятия дошкольников
Восприятие – это отражение в коре головного мозга предметов и явлений, воздействующих на анализаторы человека. Восприятие – не просто механическое, зеркальное отражение мозгом человека того, что находится перед его глазами или того, что слышит его ухо. Восприятие всегда активный процесс, активная д ...