Идеи, развитые в связи с преобразованием плоских областей, естественно переносятся и на случай пространственных областей.
Пусть имеем пространство, отнесенное к системе прямоугольных координат , и другое пространство с системой координат
. Рассмотрим две замкнутые области
и
в этих пространствах ограниченные соответственно поверхностями
и
, которые всегда будем предполагать кусочно-гладкими. Допустим, что эти области связаны между собой взаимно однозначным непрерывным соответствием, которое осуществляется формулами:
При этом, необходимо, точкам поверхности отвечают именно точки поверхности
, и наоборот.
Пусть функции (19) имеют в области непрерывные частные производные; тогда и якобиан
также является непрерывной функцией в . Здесь будем считать, что этот определитель всегда отличен от нуля, сохраняя определенный знак.
Если в области взять кусочно- гладкую поверхность:
,
,
(предполагая, что параметры изменяются в некоторой области на плоскости
), то формулы (19) преобразуют ее в кусочно-гладкую же поверхность в области
. Эта поверхность будет иметь уравнения
.
Ограничимся случаем гладкой поверхности: на ней особых точек нет, так что определяем:
,
,
одновременно в нуль не обращаются. Проверке подлежит лишь отсутствие особых точек и на поверхности.
Имеем линейные равенства относительно величин:
,
,
.
Определитель, составленный из коэффициентов при этих величинах, т.e. из алгебраических дополнений к элементам определителя , по известной теореме алгебры равен квадрату этого последнего и, следовательно, вместе с ним отличен от нуля. Если бы левые части написанных равенств в какой-нибудь точке одновременно обратились а нуль, то нулями были бы и все три определителя, что противоречило бы допущению.
Числа ,
,
однозначно характеризующие положение точки в пространстве
, называются криволинейными координатами этой точки. Точки пространства
, для которых одна из этих координат сохраняет постоянное значение, образуют координатную поверхность. Всего будет существовать три семейства таких координатных поверхностей; через каждую точку области
проходит по одной поверхности каждого семейства.
Понятие «графическая грамотность» в психолого-педагогической литературе
В словарях приводится следующее толкование: «грамотность - определенный уровень владения человеком навыками чтения, письма, счета; грамотность функциональная - владение человеком комплексом знаний, умений и навыков, необходимых ему для сознательного и активного участия в экономической, природоохран ...
История развития факультативных занятий по математике, их роль в системе
школьного образования
В 1965 году под председательством видного математика, вице-президента АПН СССР А.И. Маркушевича и под руководством выдающегося математика современности академика А.Н. Колмогорова была образована комиссия по определению содержания среднего математического образования. Введение факультативных занятий ...
Роль художественной литературы в воспитании
дошкольников
Отбирая произведения для детей, мы опираемся на народное творчество, классику и современное искусство. Каждый народ веками отбирает, шлифует формы, краски, орнаменты на игрушках, мелодии и ритмы песен, движения танцев, меткость и образность языка словесного фольклора. Все это впитывается ребенком с ...