Преобразование пространств и криволинейные координаты

Страница 1

Идеи, развитые в связи с преобразованием плоских областей, естественно переносятся и на случай пространственных областей.

Пусть имеем пространство, отнесенное к системе прямоугольных координат , и другое пространство с системой координат . Рассмотрим две замкнутые области и в этих пространствах ограниченные соответственно поверхностями и , которые всегда будем предполагать кусочно-гладкими. Допустим, что эти области связаны между собой взаимно однозначным непрерывным соответствием, которое осуществляется формулами:

При этом, необходимо, точкам поверхности отвечают именно точки поверхности , и наоборот.

Пусть функции (19) имеют в области непрерывные частные производные; тогда и якобиан

также является непрерывной функцией в . Здесь будем считать, что этот определитель всегда отличен от нуля, сохраняя определенный знак.

Если в области взять кусочно- гладкую поверхность:

, ,

(предполагая, что параметры изменяются в некоторой области на плоскости ), то формулы (19) преобразуют ее в кусочно-гладкую же поверхность в области . Эта поверхность будет иметь уравнения

.

Ограничимся случаем гладкой поверхности: на ней особых точек нет, так что определяем:

, ,

одновременно в нуль не обращаются. Проверке подлежит лишь отсутствие особых точек и на поверхности.

Имеем линейные равенства относительно величин:

,

,

.

Определитель, составленный из коэффициентов при этих величинах, т.e. из алгебраических дополнений к элементам определителя , по известной теореме алгебры равен квадрату этого последнего и, следовательно, вместе с ним отличен от нуля. Если бы левые части написанных равенств в какой-нибудь точке одновременно обратились а нуль, то нулями были бы и все три определителя, что противоречило бы допущению.

Числа , , однозначно характеризующие положение точки в пространстве , называются криволинейными координатами этой точки. Точки пространства , для которых одна из этих координат сохраняет постоянное значение, образуют координатную поверхность. Всего будет существовать три семейства таких координатных поверхностей; через каждую точку области проходит по одной поверхности каждого семейства.

Страницы: 1 2 3 4

Новые статьи:

Этнокультурная соотнесенность обучения и воспитания детей, приобщение их к истокам культуры своего народа
В своей истории многие народы осуществляют духовно – творческие свершения, переживающие века (древнегреческое искусство, римское право, германская музыка и т.д.) Каждый народ приносит в культуру своё, и каждое достижение народа является общим для всего человечества. Вот почему национальный гений и ...

Организация ветеринарного образования
После распада СССР коллектив Витебского ордена «Знак Почета» ветеринарного института предпринимал меры по перестройке высшего ветеринарного образования в суверенной Республике Беларусь. Было очевидным, что систему подготовки ветеринарных врачей необходимо ориентировать на мировое образовательное пр ...

Проблемы модернизации общего образования и пути их решения
Базовое звено модернизации образования - общеобразовательная школа. Модернизация школы предполагает решение ряда системных задач первостепенной из которых является задача достижения нового, современного качества образования. Однако на пути становления нового качества образования, необходимо разреши ...

Разделы

Copyright © 2025 - All Rights Reserved - www.detailededu.ru