Идеи, развитые в связи с преобразованием плоских областей, естественно переносятся и на случай пространственных областей.
Пусть имеем пространство, отнесенное к системе прямоугольных координат ![]()
![]()
, и другое пространство с системой координат ![]()
![]()
. Рассмотрим две замкнутые области
и
в этих пространствах ограниченные соответственно поверхностями
и
, которые всегда будем предполагать кусочно-гладкими. Допустим, что эти области связаны между собой взаимно однозначным непрерывным соответствием, которое осуществляется формулами:
При этом, необходимо, точкам поверхности
отвечают именно точки поверхности
, и наоборот.
Пусть функции (19) имеют в области
непрерывные частные производные; тогда и якобиан
также является непрерывной функцией в
. Здесь будем считать, что этот определитель всегда отличен от нуля, сохраняя определенный знак.
Если в области
взять кусочно- гладкую поверхность:
,
,
(предполагая, что параметры изменяются в некоторой области
на плоскости
), то формулы (19) преобразуют ее в кусочно-гладкую же поверхность в области
. Эта поверхность будет иметь уравнения
.
Ограничимся случаем гладкой поверхности: на ней особых точек нет, так что определяем:
,
,
одновременно в нуль не обращаются. Проверке подлежит лишь отсутствие особых точек и на поверхности.
Имеем линейные равенства относительно величин:
,
,
.
Определитель, составленный из коэффициентов при этих величинах, т.e. из алгебраических дополнений к элементам определителя , по известной теореме алгебры равен квадрату этого последнего и, следовательно, вместе с ним отличен от нуля. Если бы левые части написанных равенств в какой-нибудь точке
одновременно обратились а нуль, то нулями были бы и все три определителя, что противоречило бы допущению.
Числа
,
,
однозначно характеризующие положение точки в пространстве
, называются криволинейными координатами этой точки. Точки пространства
, для которых одна из этих координат сохраняет постоянное значение, образуют координатную поверхность. Всего будет существовать три семейства таких координатных поверхностей; через каждую точку области
проходит по одной поверхности каждого семейства.
Тепловое движение
Все тела состоят из молекул, которые находятся в непрерывном движении. При повышении температуры скорость движения молекул увеличивается, при понижении уменьшается. Следовательно, температура тела зависит от скорости движения молекул. Явления, связанные с нагреванием и охлаждением тел называются те ...
Решение проблемы самостоятельности в педагогической литературе
В дидактических и методических работах нет единого, общепринятого определения самостоятельной работы. Учеными по-разному трактуется сущность самостоятельной работы, ее структура и роль педагога в организации этой работы. Разные авторы выделяют в качестве главных те или иные признаки и структурные з ...
Программа логопедических занятий для учащихся 1-7 классов школы VIII вида
Общая характеристика программы Процесс гуманизации общества и школы, изменение целей и содержания создают ситуацию, позволяющую по новому оценить логопедическую работу в школе VIII вида. Логопедическая работа в школе VIII вида занимает важное место в процессе коррекции нарушений развития детей с ин ...