Идеи, развитые в связи с преобразованием плоских областей, естественно переносятся и на случай пространственных областей.
Пусть имеем пространство, отнесенное к системе прямоугольных координат , и другое пространство с системой координат
. Рассмотрим две замкнутые области
и
в этих пространствах ограниченные соответственно поверхностями
и
, которые всегда будем предполагать кусочно-гладкими. Допустим, что эти области связаны между собой взаимно однозначным непрерывным соответствием, которое осуществляется формулами:
При этом, необходимо, точкам поверхности отвечают именно точки поверхности
, и наоборот.
Пусть функции (19) имеют в области непрерывные частные производные; тогда и якобиан
также является непрерывной функцией в . Здесь будем считать, что этот определитель всегда отличен от нуля, сохраняя определенный знак.
Если в области взять кусочно- гладкую поверхность:
,
,
(предполагая, что параметры изменяются в некоторой области на плоскости
), то формулы (19) преобразуют ее в кусочно-гладкую же поверхность в области
. Эта поверхность будет иметь уравнения
.
Ограничимся случаем гладкой поверхности: на ней особых точек нет, так что определяем:
,
,
одновременно в нуль не обращаются. Проверке подлежит лишь отсутствие особых точек и на поверхности.
Имеем линейные равенства относительно величин:
,
,
.
Определитель, составленный из коэффициентов при этих величинах, т.e. из алгебраических дополнений к элементам определителя , по известной теореме алгебры равен квадрату этого последнего и, следовательно, вместе с ним отличен от нуля. Если бы левые части написанных равенств в какой-нибудь точке одновременно обратились а нуль, то нулями были бы и все три определителя, что противоречило бы допущению.
Числа ,
,
однозначно характеризующие положение точки в пространстве
, называются криволинейными координатами этой точки. Точки пространства
, для которых одна из этих координат сохраняет постоянное значение, образуют координатную поверхность. Всего будет существовать три семейства таких координатных поверхностей; через каждую точку области
проходит по одной поверхности каждого семейства.
Особенности научных исследований в
курсе "Агрохимия"
"Агрохимия - наука об оптимизации питания растений, применения удобрений и плодородия почвы с учетом биоклиматического потенциала для получения высокого урожая и качества продукции." (цит. по Минееву, 2006). Агрохимия, как наука занимается разработкой теоретических основ и агротехнических ...
Типы, серии картин. Основные требования, выдвигаемые методикой к картине и
работе с ней
Подбирая сюжетные картинки для рассказывания, необходимо учитывать, чтобы их содержание было доступно детям, связано с жизнью детского сада, с окружающей действительностью. Для коллективных рассказов выбираются картины с достаточным по объему материалом: многофигурные, на которых изображено несколь ...
Онтогенез развития связной речи в дошкольном возрасте с
нормальным речевым развитием
Вопросы развития связной речи изучались в разных аспектах Ушинским К.Д., Тихеевой Е.И., Коротковой Э.П., Бородич А.М., Усовой А.П., Соловьевой О.И. и другими. "Связная речь, - подчеркивал Сохин Ф.А., - это не просто последовательность связанных друг с другом мыслей, которые выражены точными сл ...