Преобразование пространств и криволинейные координаты

Страница 1

Идеи, развитые в связи с преобразованием плоских областей, естественно переносятся и на случай пространственных областей.

Пусть имеем пространство, отнесенное к системе прямоугольных координат , и другое пространство с системой координат . Рассмотрим две замкнутые области и в этих пространствах ограниченные соответственно поверхностями и , которые всегда будем предполагать кусочно-гладкими. Допустим, что эти области связаны между собой взаимно однозначным непрерывным соответствием, которое осуществляется формулами:

При этом, необходимо, точкам поверхности отвечают именно точки поверхности , и наоборот.

Пусть функции (19) имеют в области непрерывные частные производные; тогда и якобиан

также является непрерывной функцией в . Здесь будем считать, что этот определитель всегда отличен от нуля, сохраняя определенный знак.

Если в области взять кусочно- гладкую поверхность:

, ,

(предполагая, что параметры изменяются в некоторой области на плоскости ), то формулы (19) преобразуют ее в кусочно-гладкую же поверхность в области . Эта поверхность будет иметь уравнения

.

Ограничимся случаем гладкой поверхности: на ней особых точек нет, так что определяем:

, ,

одновременно в нуль не обращаются. Проверке подлежит лишь отсутствие особых точек и на поверхности.

Имеем линейные равенства относительно величин:

,

,

.

Определитель, составленный из коэффициентов при этих величинах, т.e. из алгебраических дополнений к элементам определителя , по известной теореме алгебры равен квадрату этого последнего и, следовательно, вместе с ним отличен от нуля. Если бы левые части написанных равенств в какой-нибудь точке одновременно обратились а нуль, то нулями были бы и все три определителя, что противоречило бы допущению.

Числа , , однозначно характеризующие положение точки в пространстве , называются криволинейными координатами этой точки. Точки пространства , для которых одна из этих координат сохраняет постоянное значение, образуют координатную поверхность. Всего будет существовать три семейства таких координатных поверхностей; через каждую точку области проходит по одной поверхности каждого семейства.

Страницы: 1 2 3 4

Новые статьи:

Многоуровневая система образования в России – как условие успешного функционирования системы допрофессионального образования
На современном этапе развития нашего общества и системы образования как одного из его важнейших социальных институтов неуклонно возрастает потребность в компетентных специалистах с творческим складом ума, способных находить новые пути и методы в науке, технике, экономике, управлении. Решение пробле ...

Цели и задачи обучения английскому языку на профильном уровне. Требования к уровню подготовки выпускников
Изучение иностранного языка в целом и английского языка, в частности, на профильном уровне в старшей школе направлено на достижение следующих целей: • Дальнейшее развитие иноязычной коммуникативной компетенции (речевой, языковой, социокультурной, компенсаторной и учебно-познавательной): речевая ком ...

Необходимость формирования культуры межнационального общения у учеников в современной школе
В последнее время все чаще слышатся слова «этносы», «народы», «терпимость», «толерантность», «межнациональное общение». Межэтнические отношения стали важнейшим элементом социальной и политической реальности. Особенность России состоит в том, что ее население составляют более ста коренных народов, п ...

Разделы

Copyright © 2020 - All Rights Reserved - www.detailededu.ru