Преобразование пространств и криволинейные координаты

Страница 1

Идеи, развитые в связи с преобразованием плоских областей, естественно переносятся и на случай пространственных областей.

Пусть имеем пространство, отнесенное к системе прямоугольных координат , и другое пространство с системой координат . Рассмотрим две замкнутые области и в этих пространствах ограниченные соответственно поверхностями и , которые всегда будем предполагать кусочно-гладкими. Допустим, что эти области связаны между собой взаимно однозначным непрерывным соответствием, которое осуществляется формулами:

При этом, необходимо, точкам поверхности отвечают именно точки поверхности , и наоборот.

Пусть функции (19) имеют в области непрерывные частные производные; тогда и якобиан

также является непрерывной функцией в . Здесь будем считать, что этот определитель всегда отличен от нуля, сохраняя определенный знак.

Если в области взять кусочно- гладкую поверхность:

, ,

(предполагая, что параметры изменяются в некоторой области на плоскости ), то формулы (19) преобразуют ее в кусочно-гладкую же поверхность в области . Эта поверхность будет иметь уравнения

.

Ограничимся случаем гладкой поверхности: на ней особых точек нет, так что определяем:

, ,

одновременно в нуль не обращаются. Проверке подлежит лишь отсутствие особых точек и на поверхности.

Имеем линейные равенства относительно величин:

,

,

.

Определитель, составленный из коэффициентов при этих величинах, т.e. из алгебраических дополнений к элементам определителя , по известной теореме алгебры равен квадрату этого последнего и, следовательно, вместе с ним отличен от нуля. Если бы левые части написанных равенств в какой-нибудь точке одновременно обратились а нуль, то нулями были бы и все три определителя, что противоречило бы допущению.

Числа , , однозначно характеризующие положение точки в пространстве , называются криволинейными координатами этой точки. Точки пространства , для которых одна из этих координат сохраняет постоянное значение, образуют координатную поверхность. Всего будет существовать три семейства таких координатных поверхностей; через каждую точку области проходит по одной поверхности каждого семейства.

Страницы: 1 2 3 4

Новые статьи:

Понятие цели воспитания
Процесс воспитания начинается с определения его целей. Главной целью воспитания является формирование и развитие ребенка как личности, которая обладает полезными качествами, необходимыми ей для жизни в обществе. Цель и задачи воспитания не могут устанавливаться раз и навсегда в любом обществе. Изме ...

Эмоционально-эстетическая оценка и самооценка
Результат решения выполненного задания отмечается с точки зрения оригинальности, самостоятельности, выразительности, соответствия замысла и грамотности. Дети по подгруппам защищают свой проект, рассказывая о своем подходе в создании композиции панно по теме ''Волшебница Зима''. В качестве усиления ...

Выбор музыкального произведения для беседы
«Щелкунчик» — соч. 71, балет Петра Ильича Чайковского в двух актах на либретто Мариуса Петипа по мотивам сказки Эрнеста Гофмана «Щелкунчик и мышиный король». Щелкунчик - это добрый друг и старый знакомый, который не раз приходил к нам в гости, и ещё много раз придёт… И каждый знает своего собственн ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru