Несобственные тройные интегралы

Страница 2

где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки . Суммируя, для проекций полной силы притяжения на оси координат получим

Аналогично определяется и потенциал нашего тела на точку:

.

Если точка лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл по любой из переменных , , под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что

, ,

В случае же, когда точка сама принадлежит телу , в этой точке , и подинтегральные функции в и вблизи нее перестают быть ограниченными.

Страницы: 1 2 

Новые статьи:

Виды чтения, особенности обучения экстенсивному чтению
В зависимости от цели чтения читающий будет использовать одну из стратегий подхода к работе с текстом или один из типов чтения (чтение по диагонали, «сканирование» текста, интенсивное и экстенсивное чтение). При чтении по диагонали мы пробегаем глазами страницы, чтобы получить общее представление о ...

Организация ветеринарного образования
После распада СССР коллектив Витебского ордена «Знак Почета» ветеринарного института предпринимал меры по перестройке высшего ветеринарного образования в суверенной Республике Беларусь. Было очевидным, что систему подготовки ветеринарных врачей необходимо ориентировать на мировое образовательное пр ...

Вычисление тройного интеграла, распространенного на параллелепипед
Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция , представляет собой прямоугольный параллелепипед (рис.1), проектирующийся на плоскость в прямоугольник . Теорема. Если для функции существует тройной интеграл (5) и при каждом постоянно ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru