Несобственные тройные интегралы

Страница 2

где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки . Суммируя, для проекций полной силы притяжения на оси координат получим

Аналогично определяется и потенциал нашего тела на точку:

.

Если точка лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл по любой из переменных , , под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что

, ,

В случае же, когда точка сама принадлежит телу , в этой точке , и подинтегральные функции в и вблизи нее перестают быть ограниченными.

Страницы: 1 2 

Новые статьи:

Организация физкультурных занятий в детском саду
Физкультурные занятия — основная форма организованного систематического обучения физическим упражнениям в детском саду. Физкультурные занятия были введены в дошкольные учреждения в 50-е годы XX в. Первоначально занятия с использованием физических упражнений получили название занятия гимнастикой и п ...

Организация проектной деятельности в школе
В современном мире вследствие неумолимо быстрого развития технологий бесконечно расширяется информационное пространство, объем информации, необходимой в жизни увеличивается c огромной скоростью. В связи c этим постоянно обновляется и пополняется база знаний, которую человек должен приобрести в школ ...

Клиника
При умственной отсталости, представляющей собой полиморфную группу патологических состояний, отмечается большое разнообразие клинико-психопатологических расстройств. Поэтому клиническая систематика УО строится на широко используемых понятиях «дифференцированная» и «недифференцированная» умственная ...

Разделы

Copyright © 2025 - All Rights Reserved - www.detailededu.ru