Несобственные тройные интегралы

Страница 2

где расстояние элемента (или точки, в которой мы считаем сосредоточенной его массу) от точки . Суммируя, для проекций полной силы притяжения на оси координат получим

Аналогично определяется и потенциал нашего тела на точку:

.

Если точка лежит вне тела, то все эти интегралы оказываются собственными. В этом случае можно дифференцировать интеграл по любой из переменных , , под знаком интеграла на основании соображений, сходных с теми, которыми пользовались в отношении простых интегралов. В результате мы и получим, что

, ,

В случае же, когда точка сама принадлежит телу , в этой точке , и подинтегральные функции в и вблизи нее перестают быть ограниченными.

Страницы: 1 2 

Новые статьи:

Роль коллектива в воспитании учащихся
Система воспитания, сложившиеся в нашей стране, получила название коллективистической. В ее основе лежит тезис, согласно которому воспитание, и, следовательно, полноценное развитие личности возможны только в коллективе и через коллектив. Своими практическими делами А.С. Макаренко доказал, что разви ...

Пути формирования у младших школьников ценностного отношения к здоровью
По выражению академика Н.М. Амосова «…чтобы быть здоровым, нужны собственные усилия, постоянные и значительные. Заменить их ничем нельзя». Указать нужное направление «собственным усилиям» призвана молодая быстро развивающаяся наука валеология». Валеология (от латинского valeo - «здравствовать», быт ...

Особенности графических умений младших школьников
В специальной литературе отмечается, что одна из наиболее распространенных причин трудностей овладения графической грамотностью письма учащихся младшего школьного возраста – нарушение интеллектуального развития. Формирование графической грамотности осуществляется в тесной связи с функционированием ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru