При построении общего определения нового интегрального образования тройного интеграла - основную роль играет понятие объема тела.
С понятием объема уже знакомы. Условие существования объема для данного тела заключается в том, чтобы ограничивающая его поверхность имела объем 0 . Только такие поверхности будем рассматривать, так, что существование объемов во всех нужных нам случаях тем самым обеспечивается. В частности, в состав указанного класса поверхностей входят кусочно-гладкие поверхности.
Пусть теперь в некоторой пространственной области (V) задана функция f(x, y, z). Разобьем эту область с помощью сети поверхностей на конечное число частей (V1), (V2), … , (Vn), имеющих соответственно объемы V1, V2, … ,Vn. В пределах i-го элемента возьмем произвольную точку
, значение функции в этой точке
умножим на объем Vi и составим интегральную сумму
Vi.
Конечный предел I этой суммы, при стремлении к нулю наибольшего из диаметров всех областей (Vi) и называется тройным интегралом функции f(x, y, z) в области (V). Он обозначается символом
.
Конечный предел подобного вида может существовать только для ограниченной функции. Для такой функции вводятся, кроме интегральной суммы σ, еще суммы Дарбу:
,
,
где
,
.
Обычным путем устанавливается, что для существования интеграла необходимо и достаточно условие
или
,
где
есть колебание функции f в области
. Заметим, что при существовании интеграла обе суммы s, S также имеют его своим пределом.
Отсюда непосредственно следует, что всякая непрерывная функция f интегрируема.
Можно несколько расширить эти условия, а именно: интегрируема всякая ограниченная функция, все разрывы которой лежат на конечном числе поверхностей с объемом 0.
Доказательство этого утверждения основано на следующей лемме:
Если область (V), содержащая поверхность (S) с объемом 0, разложена на элементарные области, то сумма объемов тех из них, которые задевают поверхность (S), стремиться к нулю вместе с диаметрами всех частичных областей.
Методы и приемы рейтинговых
оценок
Теоретические и методологические корни оценки лежат в науке аксиологии (теории ценностей). Оставляя за рамками данной работы методологический анализ оценочного подхода остановимся на методической схеме рейтинговой оценки. Она базируется на содержании процесса оценивания, и ее основными элементами в ...
Проблемы организация самостоятельной работы и ее задачи
Начальное обучение является фундаментом образования. От того, насколько прочно заложены основы первоначального обучения, зависит дальнейшее формирование знаний и умений в средних классах школы. И не только содержание обучения в начальных классах является подготовительным курсом к основам наук, вся ...
Исследование спроса на услугу проектируемого
детского дошкольного учреждения
Условия современного рынка образовательных услуг (быстроизменяющаяся внешняя среда, конкурентная борьба, высокая степень предъявляемых требований и т.д.) диктуют необходимость повышенного внимания к данному вопросу и своевременного реагирования. Упрощенно процесс стратегического планирования можно ...