Понятие «натуральное число», свойства натуральных чисел

Страница 1

Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь. Во всех разделах современной математики приходится рассматривать разные величины и пользоваться числами

Существует большое количество определений понятию «число».

Первое научное определение числа дал Эвклид в своих «Началах», которое он, очевидно, унаследовал от своего соотечественника Эвдокса Книдского (около 408 – около 355 гг. до н. э.): «Единица есть то, в соответствии с чем каждая из существующих вещей называется одной. Число есть множество, сложенное из единиц». Считается, что термин «натуральное число» впервые применил римский государственный деятель, философ, автор трудов по математике и теории музыки Боэций (480 – 524 гг.), но еще греческий математик Никомах из Геразы говорил о натуральном, то есть природном ряде чисел.

Понятием «натуральное число» в современном его понимании последовательно пользовался выдающийся французский математик, философ-просветитель Даламбер.

Натура́льные чи́сла — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления) предметов. Существуют два подхода к определению натуральных чисел, отличающиеся причислением нуля к натуральным числам. Соответственно, натуральные числа определяются как:

- числа, используемые при перечислении (нумеровании) предметов: 1, 2, 3, … (первый, второй, третий и т. д.). Это определение общепринято в большинстве стран, в том числе и в России.

- числа, используемые при обозначении количества предметов: 0, 1, 2, … (нет предметов, один предмет, два предмета и т. д.). Это определение было популяризовано в трудах Бурбаки, где натуральные числа определяются как мощности конечных множеств.

Отрицательные и нецелые числа натуральными не являются.

Натуральные числа имеют две основные функции:

q характеристика количества предметов;

q характеристика порядка предметов, размещенных в ряд.

В соответствии с этими функциями возникли понятия порядкового числа (первый, второй и т.д.) и количественного числа (один, два и т.д.).

Долго и трудно человечество добиралось до 1-го уровня обобщения чисел. Сто веков понадобилось, чтобы выстроить ряд самых коротких натуральных чисел от единицы до бесконечности:1, 2, … ∞. Натуральных потому, что ими обозначались (моделировались) реальные неделимые объекты: люди, животные, вещи…

Свойства чисел натурального ряда, а также производных от них находятся в различной периодической зависимости от порядковых номеров чисел.

Основные свойства натуральных чисел:

Коммутативность сложения.

Коммутативность умножения.

Ассоциативность сложения.

Ассоциативность умножения.

Дистрибутивность умножения относительно сложения.

Свойства сложения и умножения натуральных чисел:

a + b = b + a - переместительное свойство сложения

(a + b) + c = a + (b +c) - сочетательное свойство сложения

ab = ba - переместительное свойство умножения

(ab)c = a(bc) - сочетательное свойство умножения

a(b + c) = ab + ac - распределительное свойство умножения относительно сложения

Результатом сложения и умножение двух натуральных чисел всегда является натуральное число.

Если m, n, k натуральные числа, то при m - n = k говорят, что m - уменьшаемое, n - вычитаемое, k - разность; m : n = k говорят, что m - делимое, n - делитель, k - частное.

Признаки делимости натуральных чисел .

Если каждое слагаемое делится на некоторое число, то и сумма делится на это число.

Страницы: 1 2

Новые статьи:

Психологические трудности дошкольников
Адаптация – это приспособление организма к новой обстановке, а для ребенка детский садик несомненно является новым, еще неизвестным пространством, с новым окружением и новыми отношениями. Адаптация включает широкий спектр индивидуальных реакций, характер которых зависит от психофизиологических и ли ...

Анализ литературы содержания дидактических игр по формированию словаря детей раннего возраста
В книге Бондаренко А.К., рассказаны основные функции, основные виды и структура дидактических игр; показана возможность использования дидактической игры в различных её функциях. В книгу включены разные виды дидактических игр. Они сгруппированы с учётом возрастных особенностей и закономерностей разв ...

Построения начальной школы на принципах народности
В духе идеи народности ставил и разрешал Ушинский и во­прос о школе, о её роли и её задачах. Поэтому его учение о шко­ле в известном смысле можно было бы назвать учением о народ­ной школе. Ушинский, прежде всего, исходил из того положения, что ор­ганизованное и целеустремлённое воспитание имеет реш ...

Разделы

Copyright © 2020 - All Rights Reserved - www.detailededu.ru