Возвращаясь к предположениям и обозначениям п° 1.1, поставим себе задачей выразить объем (ограниченного) тела в пространстве
. Иным интегралом, распространенным на соответствующее тело
в пространстве
.
Искомый объем выражается, прежде всего поверхностным интегралом второго типа:,распространенным на внешнюю сторону поверхности
. Отсюда постараемся перейти к обыкновенному двойному интегралу.
Будем исходить из параметрических уравнений поверхности ( изменяются в области
на плоскости
). Тогда уравнения выразят, очевидно, поверхность
.
Полагая , имеем:
.
При этом интеграл берется со знаком плюс, если ориентация поверхности , связанная с рассмотрением внешней ее стороны соответствует ориентации плоскости
, что всегда можно предположить.
Так как зависят от
через посредство переменных
, то, по известному свойствy функциональных определителей:
.
Подставляя выражение в полученный выше интеграл, найдем:
.
Сопоставим этот интеграл с поверхностным интегралом второго типа, распространенным на внешнюю сторону поверхности :
.
Если его преобразовать, исходя из параметрических уравнений к обыкновенному двойному интегралу придем как раз к интегралу. Единственное различие между этими интегралами может заключаться лишь в знаке: если ориентация плоскости соответствует ориентации поверхности
, связанной с рассмотрением внешней ее стороны, то интегралы равны, в противном же случае они разнятся знаками.
Наконец, от интеграла по формуле Остроградского можно перейти к тройному интегралу по области :
.
Подинтегральное выражение равно:
Сумма, стоящая здесь в первой строке, равна якобиану:
,
в чем легко убедиться, разлагая этот определитель по элементам последней строки; сумма же в квадратных скобках, как показывает непосредственное вычисление, равна нулю. Таким образом, приходим к формуле:
.
Если вспомнить, что по предположению якобиан сохраняет знак, который он сообщает и интегралу, то станет ясно (так как здесь считаем ), что знак перед интегралом должен совпасть со знаком якобиана. Это дает нам право переписать полученный результат в окончательной форме:
Специфика профориентационной работы с сельскими
школьниками на труд в сельском хозяйстве
В настоящее время в сельскохозяйственном производстве насчитывается более 100 рабочих профессий, по которым осуществляется подготовка рабочих в сельских общеобразовательных школах и сельских ПТУ. Профилирующие профессии сельскохозяйственного производства распределяются следующим образом. Основой пр ...
Проблемы организация самостоятельной работы и ее задачи
Начальное обучение является фундаментом образования. От того, насколько прочно заложены основы первоначального обучения, зависит дальнейшее формирование знаний и умений в средних классах школы. И не только содержание обучения в начальных классах является подготовительным курсом к основам наук, вся ...
Формы и приемы работы воспитателя по адаптации детей
Основной целью занятий в ДОУ является формирование у детей знаний и умений, однако, не менее важно воспитать в ребенке любознательность, операционные стороны мышления, произвольное внимание, потребность в самостоятельном поиске ответов на возникающие вопросы. Трудно предположить, что ребенок, у кот ...