Выражение объема в криволинейных координатах

Страница 1

Возвращаясь к предположениям и обозначениям п° 1.1, поставим себе задачей выразить объем (ограниченного) тела в пространстве . Иным интегралом, распространенным на соответствующее тело в пространстве .

Искомый объем выражается, прежде всего поверхностным интегралом второго типа:,распространенным на внешнюю сторону поверхности . Отсюда постараемся перейти к обыкновенному двойному интегралу.

Будем исходить из параметрических уравнений поверхности ( изменяются в области на плоскости ). Тогда уравнения выразят, очевидно, поверхность .

Полагая , имеем:.

При этом интеграл берется со знаком плюс, если ориентация поверхности , связанная с рассмотрением внешней ее стороны соответствует ориентации плоскости , что всегда можно предположить.

Так как зависят от через посредство переменных , то, по известному свойствy функциональных определителей:

.

Подставляя выражение в полученный выше интеграл, найдем:

.

Сопоставим этот интеграл с поверхностным интегралом второго типа, распространенным на внешнюю сторону поверхности :

.

Если его преобразовать, исходя из параметрических уравнений к обыкновенному двойному интегралу придем как раз к интегралу. Единственное различие между этими интегралами может заключаться лишь в знаке: если ориентация плоскости соответствует ориентации поверхности , связанной с рассмотрением внешней ее стороны, то интегралы равны, в противном же случае они разнятся знаками.

Наконец, от интеграла по формуле Остроградского можно перейти к тройному интегралу по области :

.

Подинтегральное выражение равно:

Сумма, стоящая здесь в первой строке, равна якобиану:

,

в чем легко убедиться, разлагая этот определитель по элементам последней строки; сумма же в квадратных скобках, как показывает непосредственное вычисление, равна нулю. Таким образом, приходим к формуле:

.

Если вспомнить, что по предположению якобиан сохраняет знак, который он сообщает и интегралу, то станет ясно (так как здесь считаем ), что знак перед интегралом должен совпасть со знаком якобиана. Это дает нам право переписать полученный результат в окончательной форме:

Страницы: 1 2

Новые статьи:

Формирование общеучебных умений и навыков на уроках химии в 11 классе
В программах школ специальное внимание уделено формированию умений учащихся, выделен раздел: "Основные требования к знаниям и умениям учащихся". Сравнение перечней умений показывает их общность, и выделяют следующие (по Усовой А.В): Умения оценочной деятельности (умения объяснить и доказа ...

Методические аспекты в преподавание основных школьных редакторов
Программа PhotoShop представляет собой мощную программу по обработке растровой графики, устойчивую к действиям пользователя. Данное свойство позволяет использовать графический редактор, как в профессиональной деятельности, так и в игровом процессе. Алгоритм работы большинства функций позволяет прос ...

Развитие воспитательной системы
Воспитательная система - не застивший, а постоянно развивающийся феномен. Появляются и исчезают различные идеи, представления, устойчивые способы взаимодействия детей, те или иные виды деятельности, организационные структуры; усложняется и упорядочивается жизнедеятельность коллектива или, наоборот, ...

Разделы

Copyright © 2025 - All Rights Reserved - www.detailededu.ru