Выражение объема в криволинейных координатах

Страница 1

Возвращаясь к предположениям и обозначениям п° 1.1, поставим себе задачей выразить объем (ограниченного) тела в пространстве . Иным интегралом, распространенным на соответствующее тело в пространстве .

Искомый объем выражается, прежде всего поверхностным интегралом второго типа:,распространенным на внешнюю сторону поверхности . Отсюда постараемся перейти к обыкновенному двойному интегралу.

Будем исходить из параметрических уравнений поверхности ( изменяются в области на плоскости ). Тогда уравнения выразят, очевидно, поверхность .

Полагая , имеем:.

При этом интеграл берется со знаком плюс, если ориентация поверхности , связанная с рассмотрением внешней ее стороны соответствует ориентации плоскости , что всегда можно предположить.

Так как зависят от через посредство переменных , то, по известному свойствy функциональных определителей:

.

Подставляя выражение в полученный выше интеграл, найдем:

.

Сопоставим этот интеграл с поверхностным интегралом второго типа, распространенным на внешнюю сторону поверхности :

.

Если его преобразовать, исходя из параметрических уравнений к обыкновенному двойному интегралу придем как раз к интегралу. Единственное различие между этими интегралами может заключаться лишь в знаке: если ориентация плоскости соответствует ориентации поверхности , связанной с рассмотрением внешней ее стороны, то интегралы равны, в противном же случае они разнятся знаками.

Наконец, от интеграла по формуле Остроградского можно перейти к тройному интегралу по области :

.

Подинтегральное выражение равно:

Сумма, стоящая здесь в первой строке, равна якобиану:

,

в чем легко убедиться, разлагая этот определитель по элементам последней строки; сумма же в квадратных скобках, как показывает непосредственное вычисление, равна нулю. Таким образом, приходим к формуле:

.

Если вспомнить, что по предположению якобиан сохраняет знак, который он сообщает и интегралу, то станет ясно (так как здесь считаем ), что знак перед интегралом должен совпасть со знаком якобиана. Это дает нам право переписать полученный результат в окончательной форме:

Страницы: 1 2

Новые статьи:

Конспект занятия с детьми старшего дошкольного возраста
Цель: активизация и развитие творческого воображения дошкольников в процессе восприятия музыкальных произведений. Задачи : 1) Познакомить детей с музыкой Петра Ильича Чайковского из балета «Щелкунчик». 2) Знакомство с жанром балета через знакомство с музыкальной культурой П.И.Чайковского. 3) Воспит ...

Основные принципы и задачи непрерывного образования
В основе функционирования непрерывного образования лежат следующие принципы, определяющие его специфику: гуманизма, демократизма, мобильности, опережения, открытости, непрерывности. Принцип гуманизма свидетельствует об обращенности образования к человеку, о свободе выбора личностью форм, сроков, ви ...

Калейдоскоп различных верований, законно сосуществующих в одном социальном пространстве
В США на деле существует свобода вероисповедания. Религии большие и маленькие и многие секты и культы, а также клубы, со своими кредо и символикой повсеместны, особенно в больших городах, как Нью Йорк, Чикаго или Сан-франциско. В академической среде сильна группа либералов, т.е. так называемых неза ...

Разделы

Copyright © 2020 - All Rights Reserved - www.detailededu.ru