Вычисление тройного интеграла, распространенного на параллелепипед

Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция , представляет собой прямоугольный параллелепипед (рис.1), проектирующийся на плоскость в прямоугольник .

Теорема. Если для функции существует тройной интеграл

(5)

и при каждом постоянном из — двойной интеграл

,

то существует также повторный интеграл

, (7)

и выполняется равенство

.

доказательство: Разделим промежутки , , на части с помощью точек

,

,

,

тем самым разложим параллелепипед (Т) на элементарные параллелепипеды

и одновременно прямоугольник — на элементарные прямоугольники

(где и пробегают те же значения, что и только что).

Положив

имеем в силу 1.3, 1.7,

для всех значений из . Фиксируя произвольное значение , в этом промежутке, просуммируем подобные неравенства для всех значений j и k; мы получим неравенства

.

Наконец, умножим эти неравенства почленно на и просуммируем на этот раз по значку :

.

Крайние члены представляют собой суммы Дарбу для интеграла и стремятся к нему, как к пределу, при стремлении к нулю всех разностей , , . Значит, к тому же пределу стремится интегральная сумма, стоящая посредине. Этим доказано одновременно как существование интеграла, так и равенство. Если предположить еще существование простого интеграла

при любых значениях х из , у из ,то двойной интеграл в равенстве (8) можно заменить повторным и окончательно получим:

.

Таким образом, вычисление тройного интеграла приводится к последовательному вычислению трех простых интегралов. Роли переменных , в формуле (10), разумеется, могут быть произвольно переставлены.

Если , то

И здесь роли переменных можно переставлять.

В частности, для случая непрерывной функции ,очевидно, имеют место все формулы (8), (10), (11) и им подобные, получающиеся перестановкой переменных [3].

Новые статьи:

Опытно-экспериментальная работа по развитию музыкальной выразительности исполнения у младших школьников
Формирующий этап педагогического эксперимента был проведен с 22 января по 20 апреля 2007 года. Главная задача данного этапа – поиск методов, способствующих развитию музыкальной выразительности исполнения у учащихся. А также необходимо уделять внимание на обогащение, пополнение музыкально-теоретичес ...

Теория Пиаже
Исследования Жана Пиаже называют клиническим подходом к пониманию мыслительных процессов у детей. По сути его метод состоял в свободной беседе с детьми различного возраста с целью выяснить особенности их восприятия и понятийного мышления от рождения до юношества. Среди основных понятий, которыми оп ...

Теоретические обоснования универсальных учебных действий
Информационное общество требует от человека способности к самостоятельному обучению в течение постоянно меняющейся жизни, готовности к самостоятельным действиям и принятию решений. Мерой способности человека включаться в деятельность может выступать совокупность компетентностей. Для школьной образо ...

Разделы

Copyright © 2025 - All Rights Reserved - www.detailededu.ru