Вычисление тройного интеграла, распространенного на параллелепипед

Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция , представляет собой прямоугольный параллелепипед (рис.1), проектирующийся на плоскость в прямоугольник .

Теорема. Если для функции существует тройной интеграл

(5)

и при каждом постоянном из — двойной интеграл

,

то существует также повторный интеграл

, (7)

и выполняется равенство

.

доказательство: Разделим промежутки , , на части с помощью точек

,

,

,

тем самым разложим параллелепипед (Т) на элементарные параллелепипеды

и одновременно прямоугольник — на элементарные прямоугольники

(где и пробегают те же значения, что и только что).

Положив

имеем в силу 1.3, 1.7,

для всех значений из . Фиксируя произвольное значение , в этом промежутке, просуммируем подобные неравенства для всех значений j и k; мы получим неравенства

.

Наконец, умножим эти неравенства почленно на и просуммируем на этот раз по значку :

.

Крайние члены представляют собой суммы Дарбу для интеграла и стремятся к нему, как к пределу, при стремлении к нулю всех разностей , , . Значит, к тому же пределу стремится интегральная сумма, стоящая посредине. Этим доказано одновременно как существование интеграла, так и равенство. Если предположить еще существование простого интеграла

при любых значениях х из , у из ,то двойной интеграл в равенстве (8) можно заменить повторным и окончательно получим:

.

Таким образом, вычисление тройного интеграла приводится к последовательному вычислению трех простых интегралов. Роли переменных , в формуле (10), разумеется, могут быть произвольно переставлены.

Если , то

И здесь роли переменных можно переставлять.

В частности, для случая непрерывной функции ,очевидно, имеют место все формулы (8), (10), (11) и им подобные, получающиеся перестановкой переменных [3].

Новые статьи:

Расчёт количества теплоты. Удельная теплоёмкость
Количество теплоты (Q) — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин. Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, ...

Пьезоэлектрические свойства полимеров
Пьезоэлектричеством называется генерирование диэлектриками электрических зарядов при их механической деформации (нагружении) или механическая деформация диэлектриков при приложении внешнего электрического поля. Использование полимеров в качестве пьезоэлектриков в настоящее время широко распростране ...

О психолого-педагогической поддержке студентов первых курсов среднего профессионального образовательного учреждения
Внедрение концепции личностно-ориентированного образования означает необходимость в пересмотре системы организации процесса воспитания. Вместе с тем, многие из преподавателей средних профессиональных образовательных учреждений не осознают, что это означает существенное изменение собственной професс ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru