Вычисление тройного интеграла, распространенного на параллелепипед

Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция , представляет собой прямоугольный параллелепипед (рис.1), проектирующийся на плоскость в прямоугольник .

Теорема. Если для функции существует тройной интеграл

(5)

и при каждом постоянном из — двойной интеграл

,

то существует также повторный интеграл

, (7)

и выполняется равенство

.

доказательство: Разделим промежутки , , на части с помощью точек

,

,

,

тем самым разложим параллелепипед (Т) на элементарные параллелепипеды

и одновременно прямоугольник — на элементарные прямоугольники

(где и пробегают те же значения, что и только что).

Положив

имеем в силу 1.3, 1.7,

для всех значений из . Фиксируя произвольное значение , в этом промежутке, просуммируем подобные неравенства для всех значений j и k; мы получим неравенства

.

Наконец, умножим эти неравенства почленно на и просуммируем на этот раз по значку :

.

Крайние члены представляют собой суммы Дарбу для интеграла и стремятся к нему, как к пределу, при стремлении к нулю всех разностей , , . Значит, к тому же пределу стремится интегральная сумма, стоящая посредине. Этим доказано одновременно как существование интеграла, так и равенство. Если предположить еще существование простого интеграла

при любых значениях х из , у из ,то двойной интеграл в равенстве (8) можно заменить повторным и окончательно получим:

.

Таким образом, вычисление тройного интеграла приводится к последовательному вычислению трех простых интегралов. Роли переменных , в формуле (10), разумеется, могут быть произвольно переставлены.

Если , то

И здесь роли переменных можно переставлять.

В частности, для случая непрерывной функции ,очевидно, имеют место все формулы (8), (10), (11) и им подобные, получающиеся перестановкой переменных [3].

Новые статьи:

Понятие и содержание управления образовательным учреждением
Наука управления включает в себя всю сумму знаний об управлении, накопленных за сотни лет практики и обобщённых в виде теорий и методов. Искусство управления рассматривается, как способность управляющего эффективно применять на практике накопленный опыт. [10, с.52] В процессе становления управления ...

Средства, методы, формы и приемы социально-педагогической и психологической деятельности
Для осуществления любой деятельности необходимы средства, методы, формы и приемы, с помощью которых реализуется цель. Выбор средств полностью зависит от содержания деятельности, особенностей отдельного человека или группы людей, которые выступают ее объектом. "Если цели и задача воспитания, ег ...

Общечеловеческие потребности. Понятие этнокультурной потребности
Все высшие духовные потребности человека — в познании, самоутверждении, самовыражении, безопасности, самоопределении, самоактуализации — это стремления к развитию, самоусовершенствованию Чтобы человек мог удовлетворить свои потребности, необходимо создать ему соответствующие условия: свободу волепр ...

Разделы

Copyright © 2026 - All Rights Reserved - www.detailededu.ru