Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция
, представляет собой прямоугольный параллелепипед
(рис.1), проектирующийся на плоскость
в прямоугольник
.
Теорема. Если для функции
существует тройной интеграл
(5)
и при каждом постоянном
из
— двойной интеграл
,
то существует также повторный интеграл
, (7)
и выполняется равенство
![]()
.
доказательство: Разделим промежутки
,
,
на части с помощью точек
,
,
,
тем самым разложим параллелепипед (Т) на элементарные параллелепипеды
и одновременно прямоугольник
— на элементарные прямоугольники
(где
и
пробегают те же значения, что и только что).
Положив
имеем в силу 1.3, 1.7,
для всех значений
из
. Фиксируя произвольное значение
, в этом промежутке, просуммируем подобные неравенства для всех значений j и k; мы получим неравенства
.
Наконец, умножим эти неравенства почленно на
и просуммируем на этот раз по значку
:
.
Крайние члены представляют собой суммы Дарбу для интеграла и стремятся к нему, как к пределу, при стремлении к нулю всех разностей
,
,
. Значит, к тому же пределу стремится интегральная сумма, стоящая посредине. Этим доказано одновременно как существование интеграла, так и равенство. Если предположить еще существование простого интеграла
при любых значениях х из
, у из
,то двойной интеграл в равенстве (8) можно заменить повторным и окончательно получим:
.
Таким образом, вычисление тройного интеграла приводится к последовательному вычислению трех простых интегралов. Роли переменных
, в формуле (10), разумеется, могут быть произвольно переставлены.
Если
, то
И здесь роли переменных можно переставлять.
В частности, для случая непрерывной функции
,очевидно, имеют место все формулы (8), (10), (11) и им подобные, получающиеся перестановкой переменных [3].
Диагностика уровня социальной адаптации детей младшего школьного возраста в
школе-интернате
Диагностико-экспериментальная часть нашей работы была проведена в рамках волонтерской деятельности в школе-интернате № 3. Респондентами стали 2 класса – 4 и 5, дети в возрасте 10 и 11 лет. Для диагностики социальной адаптации детей-сирот в условиях школы-интерната применялись следующие методы иссле ...
Половое воспитание. Когда начинать
Воспитание современной гармонически развитой личности - есть идеал, к которому стоит стремиться. Когда в твоей жизни появляется этот хрупкий и бесценный дар, сосуд, а именно душа человека-ребенка и мы, родители, взрослые несем огромную ответственность за воспитание своих чад. Да и любовь, заключает ...
Замена переменных в тройных
интегралах
С помощью выражения объема в криволинейных координатах нетрудно установить и общую формулу замены переменных в тройных интегралах. Пуста между областями и пространств и cyществует соответствие, охарактеризованное в п0 2.1. Считая соблюденными все условия, при которых была выведена формула (26), пок ...