Таким образом, под познавательной активностью будем понимать инициативное, действенное отношение учащихся к усвоению знаний, а также проявление интереса, самостоятельности и волевых усилий в обучении.
Активизация познавательной деятельности - сознательное, целенаправленное выполнение умственной или физической работы, необходимой для овладения знаниями, умениями, навыками.
С самого начала обучения необходимо формировать познавательную активность учеников, что должно стать неотъемлемой чертой обучения младших школьников. Мы считаем, для того, чтобы повысить эффективность познавательной деятельности учащихся необходимо использовать методы работы, назначение которых формирование интереса к предмету, активизация учащихся, развитие мыслительных операций. Активизацию учащихся на уроках обучения грамоте можно достичь через интересные сюжеты игр, личным участием детей в играх, проявлением творческих и интеллектуальных способностей учеников, поддержание эмоционального тонуса в деятельности учащихся; использование в процессе обучения комплекса дидактических игр; применение системы поощрений.
В следующем параграфе мы рассмотрим понятие дидактической игры, ее виды, использование с учетом возрастных и психологических особенностях, а также организацию и проведение дидактической игры в начальной школе.
Учебно-познавательная деятельность и технология ее организации
Многочисленные факты из реальной школьной жизни свидетельствуют, что само присутствие ученика в классе еще не говорит о том, что он действительно осуществляет учебно-познавательную деятельность. Во многих случаях это могут быть разрозненные внешне мотивированные действия. Учебно-познавательная деят ...
Сущность и особенности восприятия музыки
Музыка глубоко и многообразно воздействует на чувства, мысли и волю людей, благотворно сказывается на их созидательном труде и опыте, участвует в формировании личности. Восприятие является таким же необходимым внутренним двигателем самого существования, исторического развития и социально-значимого ...
Вычисление тройного интеграла по любой области
Общий случаи интеграла, распространенного на тело любой формы, может быть легко приведен к только что рассмотренному. Именно, если функция определена в области ,то вместо нее следует лишь ввести, функцию , определенную в объемлющем прямоугольном параллелепипеде , полагая Этим путем и получаются все ...