Вычисление тройного интеграла по любой области

Общий случаи интеграла, распространенного на тело любой формы, может быть легко приведен к только что рассмотренному. Именно, если функция определена в области ,то вместо нее следует лишь ввести, функцию , определенную в объемлющем прямоугольном параллелепипеде , полагая

Этим путем и получаются все приводимые ниже формулы.

Рис. 2.

Остановимся на случаях, представляющих наибольший интерес. Пусть тело содержится между плоскостями и и каждою параллельною им плоскостью, отвечающей фиксированному значению , пересекается по некоторой фигуре, имеющей площадь; через обозначим ее проекцию на плоскость (рис. 2). Тогда

(8*)

в предположении существования тройного и двойного интегралов. Это — аналог формулы.

Пусть, далее, тело представляет собой «цилиндрический брус», ограниченный снизу и сверху, соответственно, поверхностями

проектирующимися на плоскость в некоторую фигуру , ограниченную кривой с площадью 0; с боков тело ограничено цилиндрической поверхностью с образующими, параллельными оси , и с кривой в роли направляющей. Тогда аналогично формуле имеем

при этом предполагается существование тройного интеграла и простого — внутреннего— интеграла справа.

Если область представляет собой криволинейную трапецию, ограниченную двумя кривыми (рис.14) и и прямыми , , то тело подходит под оба типа, рассмотренных выше. Заменяя двойной интеграл—то ли в формуле, то ли в формуле —повторным, получим

.

Эта формула обобщает формулу.

Как и в простейшем случае, который был рассмотрен в предыдущем п°, и здесь непрерывность функции обеспечивает приложимость всех формул и им подобных, получающихся из них перестановкой переменных .

Рис. 3.

Новые статьи:

Дифференцированные формы умственной отсталости
Наследственно обусловленные формы Болезнь Дауна Наиболее часта форма хромосомной аномалии. Популяционная частота – 1: 700. Выделяют три цитогенетических варианта: регулярная трисомия по 21-й хромосоме (до 93 % всех случаев болезни Дауна), несбалансированная транслокация с участием 21-й хромосомы и ...

Психолого-педагогические особенности развития интеллектуальных способностей детей
Интеллект (от латинского слова intellectus – разумение, понимание, постижение) в психологической науке рассматривается как «относительно устойчивая структура умственных способностей индивида». В психологической науке выделяют ряд теоретических подходов к трактовке природы интеллекта, одним из них я ...

Игровые формы обучения дошкольников
Анализ теоретических исследований позволяет выделить следующие направления развития дошкольников в старшем дошкольном возрасте, основанные на потребностной сфере: - потребность в общении со взрослыми как потребность в сотрудничестве на основе гуманных отношений; - потребность в общении со взрослыми ...

Разделы

Copyright © 2025 - All Rights Reserved - www.detailededu.ru