Вычисление тройного интеграла по любой области

Общий случаи интеграла, распространенного на тело любой формы, может быть легко приведен к только что рассмотренному. Именно, если функция определена в области ,то вместо нее следует лишь ввести, функцию , определенную в объемлющем прямоугольном параллелепипеде , полагая

Этим путем и получаются все приводимые ниже формулы.

Рис. 2.

Остановимся на случаях, представляющих наибольший интерес. Пусть тело содержится между плоскостями и и каждою параллельною им плоскостью, отвечающей фиксированному значению , пересекается по некоторой фигуре, имеющей площадь; через обозначим ее проекцию на плоскость (рис. 2). Тогда

(8*)

в предположении существования тройного и двойного интегралов. Это — аналог формулы.

Пусть, далее, тело представляет собой «цилиндрический брус», ограниченный снизу и сверху, соответственно, поверхностями

проектирующимися на плоскость в некоторую фигуру , ограниченную кривой с площадью 0; с боков тело ограничено цилиндрической поверхностью с образующими, параллельными оси , и с кривой в роли направляющей. Тогда аналогично формуле имеем

при этом предполагается существование тройного интеграла и простого — внутреннего— интеграла справа.

Если область представляет собой криволинейную трапецию, ограниченную двумя кривыми (рис.14) и и прямыми , , то тело подходит под оба типа, рассмотренных выше. Заменяя двойной интеграл—то ли в формуле, то ли в формуле —повторным, получим

.

Эта формула обобщает формулу.

Как и в простейшем случае, который был рассмотрен в предыдущем п°, и здесь непрерывность функции обеспечивает приложимость всех формул и им подобных, получающихся из них перестановкой переменных .

Рис. 3.

Новые статьи:

Организация физкультурных занятий в детском саду
Физкультурные занятия — основная форма организованного систематического обучения физическим упражнениям в детском саду. Физкультурные занятия были введены в дошкольные учреждения в 50-е годы XX в. Первоначально занятия с использованием физических упражнений получили название занятия гимнастикой и п ...

Метод примера и его роль в формировании, воспитании личности
До определенного времени в истории педагогики отношение и к понятию, и к определению понятия "метод" было таким же, как и к любому другому понятию. Исходное определение этого понятия можно обозначить как "переводное". Слово "метод" греческого происхождения, а потому, о ...

Пьезоэффект в полимерах
Прямой пьезоэлектрический эффект заключается в возникновении электрических зарядов на поверхности диэлектрика и электрической поляризации внутри него при воздействии механических нагрузок или деформаций δ. Обратный пьезоэлектрический эффект заключается в возникновении деформаций диэлектрика пр ...

Разделы

Copyright © 2020 - All Rights Reserved - www.detailededu.ru