Общий случаи интеграла, распространенного на тело любой формы, может быть легко приведен к только что рассмотренному. Именно, если функция
определена в области
,то вместо нее следует лишь ввести, функцию
, определенную в объемлющем
прямоугольном параллелепипеде
, полагая
Этим путем и получаются все приводимые ниже формулы.
Рис. 2.
Остановимся на случаях, представляющих наибольший интерес. Пусть тело содержится между плоскостями
и
и каждою параллельною им плоскостью, отвечающей фиксированному значению
, пересекается по некоторой фигуре, имеющей площадь; через
обозначим ее проекцию на плоскость
(рис. 2). Тогда
(8*)
в предположении существования тройного и двойного интегралов. Это — аналог формулы.
Пусть, далее, тело представляет собой «цилиндрический брус», ограниченный снизу и сверху, соответственно, поверхностями
проектирующимися на плоскость в некоторую фигуру
, ограниченную кривой
с площадью 0; с боков тело
ограничено цилиндрической поверхностью с образующими, параллельными оси
, и с кривой
в роли направляющей. Тогда аналогично формуле имеем
при этом предполагается существование тройного интеграла и простого — внутреннего— интеграла справа.
Если область представляет собой криволинейную трапецию, ограниченную двумя кривыми (рис.14)
и
и прямыми
,
, то тело
подходит под оба типа, рассмотренных выше. Заменяя двойной интеграл—то ли в формуле, то ли в формуле —повторным, получим
.
Эта формула обобщает формулу.
Как и в простейшем случае, который был рассмотрен в предыдущем п°, и здесь непрерывность функции обеспечивает приложимость всех формул и им подобных, получающихся из них перестановкой переменных
.
Рис. 3.
Вычисление тройного интеграла, распространенного на
параллелепипед
Изложение вопроса о вычислении тройного интеграла начнем с того случая, когда тело, в котором определена функция , представляет собой прямоугольный параллелепипед (рис.1), проектирующийся на плоскость в прямоугольник . Теорема. Если для функции существует тройной интеграл (5) и при каждом постоянно ...
Основная гимнастика как средство и метод физического воспитания ребенка
Гимнастика (от греч. «гимнос» — обнаженный) — система специально подобранных физических упражнений и научно разработанных методических положений, направленных на решение задач всестороннего физического развития и оздоровления ребенка. Она предполагает оздоровление и всестороннюю физическую подготов ...
Деятельность как условие формирования целеустремленности
Наука о психическом развитии ребенка – детская психология – зародилась как ветвь сравнительной психологии в конце XIX века. Точкой отсчета для систематических исследований психологии ребенка служит книга немецкого ученого-дарвиниста Вильгельма Прейера «Душа ребенка». В ней В. Прейер описывает резу ...